logarithmic function

Defined by the formula f (x) = logax function is logarithmic.

Wherein:

  • base a must be strictly positive and, at the same time, not equal to one (a>0, a≠1);
  • sublogarithmic expression or function argument is greater than zero (x> 0).
Content

Properties of the logarithmic function

  1. Domain of definition: the function is defined for all non-negative x.

    D(y): x∈(0;+∞).

  2. Range of values: the whole set of real numbers.

    E(y): y∈(−∞;+∞).

  3. The function does not apply to even or odd numbers.
  4. The value of any logarithmic function is zero with an argument x = 1.
  5. logarithmic function y = loga x is the inverse function of the exponential x=ay.

Graph of a logarithmic function

The continuous curve of a logarithmic function is often called logarithmic. It has no extremum and is:

  • increasing at a> 0logarithmic function
  • decreasing at 0logarithmic function

Note: График логарифмической функции всегда пересекает ось абсцисс в точке с координатами (1;0).

Leave a Reply